现代资讯现代实验室装备网
全国服务热线
400-100-9187、0731-84444840

岛津“运用功能性近红外光学成像技术对脑功能进行深入研究”

   2024-12-25 岛津国际贸易(上海)有限公司/岛津(香港)有限公司865

     近代自然科学发展的趋势表明,21世纪的自然科学重心将在生命科学,生命科学研究必将飞速发展。分子生物学的奠基人之一,诺贝尔奖获得者沃森宣称:“20世纪是基因的世纪,21世纪是脑的世纪。”。创业于1875年的岛津制作所,始终站立在科学技术的前沿,从不间断地向世间推出一个又一个尖端科学技术,为社会发展做出着贡献。在当今令人瞩目的脑功能研究领域,随处可见岛津制作所活跃的身姿,从医学生物学领域的基础研究到临床应用,再到产业应用,在广泛领域内对作为尖端学术性领域之一的脑科学实施了深入研究。

 

    目前,作为脑功能研究的手段主要有脑电图、fMRI(功能性磁共振成像)、PET、MEG等。而fNIRS:(functional Near Infrared Spectroscopy)功能性近红外光学成像技术,是近年来日本发明的新型脑功能测量手法。它可以通过生物体穿透性高的近红外光谱对脑功能进行无侵袭性测量。其原理是通过三个特定波长的近红外光来测量大脑皮层的含氧血红蛋白和脱氧血红蛋白以及总血红蛋白的含量,从而表征大脑在接受外界刺激或思维过程中不同区域的反应和功能表达。
     
    岛津制作所早于1980年开始了近红外光谱测量身体组织内氧动力学的研究,1991年发售了日本国内首台临床用无侵袭氧监测仪OM-100A。目前,在全世界范围内发售多通道型红外光学成像装置(FOIRE-30000系列,OMM-300系列)。

    近红外光学脑成像系统可广泛应用于脑功能、脑认知领域,在医疗、教育、脑疾病康复、诊断、产业、基础研究等领域有着广泛的应用前景。岛津的近红外光谱系统,为大脑功能研究提供了极大的可能性。

    我们不妨阅读以下文章,可以加深对近红外光学脑成像技术的发展和应用的了解。

      
《在新技术下观察大脑机能》

从血流量测量到大脑的功能分析
    YOKO HOSHI是fNIRS在大脑成像中研究和开发的主要专家,现任神经学东京研究院综合神经科学研究组的主任,但是她对近红外光谱临床应用的兴趣,源自于1987年在北海道大学开始的关于监控大脑中血流量的项目。那时候,她已经加入了近红外光谱的开发者之一 ——Mamoru Yamura实验室,她的第一个任务是测量细胞色素C氧化酶,这种酶通过氧气供应改变氧化态。HOSHI解释说:“我认为通过这个途径有可能来监测大脑中的氧,因为细胞色素C氧化酶的氧态是通过神经细胞中氧浓度改变的。”

    近红外光用于脑功能成像的思想源于和Tamura交流中的偶然发现,Tamura作为实验室领导人,那时其研究关注在心肌方向,有一天询问Hoshi:“如果人不能再思考,是因为大脑正经受缺乏能量的痛苦吗?”Hoshi认为可能并不是如此,她转而想通过交给学生一些问题,并同时用近红外光监测他们大脑的方法来测验这个想法。测量结果显示当他们正在思考的时候,大脑血流量增加,但当他们停止思考这些问题的时候,大脑血流量减小。

    因为血红蛋白在近红外波长范围内的光吸收特性不依赖一定有氧的存在,所以她决定与其分析细胞色素c氧化酶,不如研究血液血红蛋白。Hoshi回应到:“经过大量的技术改进和实验,我们已经撰写利用NIRS检测血红蛋白改变来测量大脑功能的相关文章。”

与岛津共同发展
    不久后,来自岛津的研究人员加入了HOSHI在北海道大学的研究团队,在Tamura 和Hoshi的指导下,岛津公司着力发展一个NIRS的通用模型。终于,岛津成功开发了NIRS系统,可以对大脑和四肢进行局部测量,1991年扩展了它的第一个测量系统。随后伴随大量的设计修改和持续的改进,直到2001年岛津开始发售OMM-2001多波段fNIRS系统。这种新的设计可以测量大脑更大范围的区域,紧接着2003年新的改进版本OMM-3000面世。这些设备自此开始应用于临床研究,2006年,岛津公司看到这些应用,于2006年开发了新的设计FORIE-3000系统,此系统现在仍应用在全日本的基础大脑科学研究中。


    多波段fNIRS允许病人在自然条件下活动的同时实时监测大脑功能,比如,与婴儿母亲配合可以监测婴儿的大脑,或者记录脑损伤患者在复原过程中的大脑功能。“现在,越来越多的研究人员开始在新生儿和患者的大脑活性的研究中应用fNIRS系统,希望fNIRS能在我们获得神经网络生长机制方面有所帮助”hoshi如此说到,她同时注意到一个新发现:在脑损伤复原过程中,在正常活动中大脑某一部分减除活性,一旦损伤部位得以康复,大脑的相应部位在康复运动中不再变的活跃。

近红外光用于情绪分析
    HOSHI把FOIRE-3000平台作为她最新研究项目的一部分,“我最近的工作是当志愿者在注视可引起肯定或否定的情绪回应的图像的时候,分析其大脑机能的变化。”fMRI经常用于包括大脑的函数图像的研究中,但是,由于志愿者必须躺在狭窄的通道中,fMRI的测量系统才能执行,所以fMRI不太适合应用于实时情感分析试验中,对于志愿者姿势和行动有很少限制的实验可使用fNIRS来执行。

    Hoshi解释说:“我们的实验结果显示,当志愿者经历一个非常强烈的不愉快情绪,情绪开始3到4秒后,大脑中特定区域的血流量明显增大。”相同实验显示愉悦的情绪可以降低大脑另一部分的血流量,这与之前报告的愉快的感觉可以降低血流量是一致的。HOSHI持续深入分析后解释说“情绪和情感研究常常靶向大脑内部的边缘系统,但是,我们认为大脑控制认知能力的部分,诸如脑前额叶表层,同样与控制非愉快情绪有密切的关系。”

分离认知空间
    Hoshi的另外一个持续项目是利用fNIRS实施眼动的联合测量,hoshi说到“当我们试图记住某物或者试图思考的时候,我们会使眼睛偏向特定的方向,我希望能找出其原因。”当我们全神贯注思考的时候,我们试图把眼睛投射到某一物体上,而且在相同任务下每个人凝视的方向也不同。儿童以相似的方式移动头部,但是会有更大的变化范围,随着年龄的增长,他们凝视的方向和范围会变得聚焦,“10岁大概是明确路线形成的临界年龄。”

    通过对上述现象设计方法所获得的fNIRS数据的分析,可以发现当人陷入沉思开始注视的时候,大脑的两个特定区域是活跃的。“这两个区域中的一个是ventral premotor,当人们把注意力放在某一个物体上的时候这个区域会被激活,另外一个区域是人们从一个物体转移注意力到另外一个物体时被激活的。心理学家和信息科学家都认为认思考发生在认知空间内,在思考中注视某一物体也许反应了我们对认知空间的注意,和这个空间内从一个到另外一个信息过程转换我们的注意力。”

fNIRS的更多可能
    fNIRS众多优点中其中一个是它可以很方便和其它分析方法结合在一起,它也是一个非常容易使用的系统,并应用于非常多的领域,不管是工程教学,还是动物学和医药领域,尤其是令人激动的领域是脑机接口(BMI)领域。岛津已经开始实验用BMI来控制由本田公司开发的MSIMO类人机器人,在肉眼观察诸如腿脚活动等人为动作的同时,可以通过应用fNIRS来描述志愿者大脑机能特点,志愿者精神上的努力可以被实时的监测和处理,并被转化成机器人行动的信号。

    Hoshi作为在基础和应用研究中,不断推进大脑图像技术深入发展的众多专家中的一员,她说到,“fNIRS提供了更多的可能,我希望科研人员在了解了fNIRS的原理和限制后,可以在自己的研究项目中可以积极运用fNIRS。”

 
反对 0举报 0 收藏 0 打赏 0
 
更多>同类资讯
推荐图文
推荐资讯
点击排行

Baidu
map